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TITANIUMALUMINIDEAPPLICATIONSINTHEHIGHSPEEDCIVILTRANSPORT

PaulA.BartolottaandDavidL. Krause

NationalAeronauticsandSpaceAdministration
GlennResearchCenter
Cleveland,Ohio44135

Abstract

It isprojectedthatwithinthenexttwodecades,overseasair
travelwill increaseto over600,000passengersperday.
TheHighSpeedCivil Transport(HSCT)is a second-
generationsupersoniccommercialaircraftproposedto
meet this demand.The expectedfleet of 500 to
1500aircraftisrequiredtomeetEPAenvironmentalgoals;
the HSCT propulsionsystem requiresadvanced
technologiestoreduceexhaustandnoisepollution.A part
of theresultantstrategytbrnoiseattenuationis theuseof
anextremelylargeexhaustnozzle.In thenozzle,several
criticalcomponentsarefabricatedfromtitaniumaluminide:
thedivergentflapuseswroughtgamma;thenozzlesidewall
isa hybridfabricationof bothwroughtgammafacesheet
andcastgammasubstructure.Thispaperdescribesthe
HSCTprogramandtheuseof titaniumaluminidefor its
components.

Introduction "

In 1997, the National Aeronautics and Space

Administration (NASA) developed an aeronautics and

space transportation technology strategic roadmap called
the "Three Pillars for Success". As the name suggests, this

plan maps out NASA's future efforts and goals through the

year 2020. Three categories (or Pillars) are described. The
Pillar One focus is on Global Civil Aviation. Goals in

Pillar One concentrate on increased civilian safety, reduced
subsonic exhaust and noise emissions, and increased

aflordability. Pillar Two: Revolutionary Technology Leaps
is the location of the HSCT program. Also included in

Pillar Two are programs to develop innovative design and

manufacturing tools and technology. Finally, Pillar Three
concentrates on the access to space. Included in this pillar
are eflorts to reduce costs of space flight by developing

reusable launch vehicles (RLV) and advancing propulsion

technologies. To achieve all of the goals listed in each

pillar by the year 2020 requires strong partnerships

between NASA, industry and academia.

Supersonic Technology (Pillar Two goal)

To maintain the nation's aeronautical leadership, NASA is

working in concert with the aircraft industry to develop

enabling technologies for a HSCT. The enabling
technology goals to he reached within 20 years are:

i) reduce overseas travel time by 50 percent, ii) reduce
exhaust emissions to well below today's subsonic engines,

iii) decrease noise levels slightly below present engines,

and iv) achieve this with at most a 15% increase in today's

subsonic fares. The focussed program chartered to turn

these goals into reality is embodied in the High Speed
Research (HSR) program. Present ef|brts are targeted for a

300 passenger aircraft that flies at supersonic speeds of
Mach 2.4 and takes-off and lands at conventional airports

(figure. I). Many enabling technologies are required to
meet this target configuration and the most critical are

being addressed in the HSR program.

Figure 1: Artist rendering of the 3(X) passenger High Speed

Civil Transport.

The HSR program is a partnership between NASA,

Boeing, General Electric (GE), and Pratt & Whitney (PW).
Duc to the stringent environmental noise and emissions

goals, most of this effort is concentrated on the propulsion

system. The HSCT engine size is larger than conventional
subsonic engines such as the GE90 or Pratt & Whitney

PW4000. As shown in figure 2, the engine has two distinct
sections. The front hall" of the engine consists of the

turbomachinery and the combustor. The boxed region

(figure 2) denotes the exhaust nozzle, which is primarily
used for noise attenuation.

NASA/TM--1999-209071 1
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Figure 2: Schematic of the HSCT propulsion system being
developed in the HSR program. The boxed area is the

exhaust nozzle portion of the engine.

To meet emissions goals, the operating temperature of the

engine core reaches supercruise temperatures typical of

military jet cngines during supercruise, or commercial
engines during take-off conditions _. The key difference for

the HSCT engine is that the major components also need to

withstand these temperature extremes t.or longer periods of

time (over 4 hours) and have design lives similar to today's
commercial engine components (-18,000 hours). This

requirement developed the need for advanced materials that

maintain their structural integrity during extreme high

temperatures and l.or long exposure durations.

In addition to their long-term temperature capabilities, the

HSCT materials need to be lightweight. According to HSR

calculations, for every unit of mass saved in the propulsion
system, the Gross Take-Off Weight (GTOW) of the HSCT is

reduced by ten times that amount. Weight plays an important

role for several reasons. From an economics point-of-view, a
low GTOW equates to more passengers and longer cruise

range (more passenger-miles). And in order to be an
acceptable transportation alternative, the HSCT should not

require a drastic change in airport infrastructure (i.e., land

and take-off using existing runways). This is also

accomplished by maintaining a low GTOW. Finally, from an
airframe viewpoint, a low engine weight reduces the

structural requirements of the wings and fuselage.

The combination of long term durability, high
temperatures, and low weight goals make TiA1 a viable

candidate for several critical components in the HSCT

propulsion system. TiAI is being considered in two

product forms (cast subcomponents and wrought sheets).
Along with these different forms, several compositions of

TiAI are being studied. The HSR program is also

addressing joining techniques, cast repair methods, and

production fabrication processes. This paper shows the
progress that the HSR team has achieved in the last several

years and addresses future HSR requirements for TiAI in

other components of the HSCT propulsion system.

TiAI Applications in the HSCT Propulsion System

Perhaps the most extensive use of TiA1 can be found in the
HSCT exhaust nozzle. This is where TiAI research was

initiated in the HSR program. Originally, cast TiAI was

selected lbr the divergent flap of the nozzle (figure 3).

TiAI was chosen for its high specific stiffness (modulus-to-

weight ratio) and its high temperature capability.

The divergent flap is a relatively large component

(I.8 m X 3.0 m) that is designed for very small deflections.

--- + Divergent Flap-
..::" Sheet TiAI

\

..... " Sidewall-

Figure 3: HSCT exhaust nozzle illustrating the use of TiAI

for the major nozzle components.

The small deflection requirement is two-t.old. First, the

performance of the engine is dependent upon certain
dimensions of the exhaust nozzle. One critical dimension is
the exit area of the exhaust nozzle. Since the width of the

divergent flap is relatively large, a small deflection can

cause a significant change in that area. From a deflection

limited structural viewpoint, the divergent flap is the back-
structure of the HSCT engine's acoustic treatment, The

acoustic treatment consists of ceramic mairix composite
(CMC) tiles and bulk acoustic absorber. The CMC tiles are

used to protect the bulk absorber from the turbulent hot

exhaust gases. Each tile is connected to the flap via a
ceramic fastener. The survival of both the CMC tile and

ceramic fastener is directly dependent to the deflection of
the divergent flap (i.e., large flap deflections will cause

produce high bending stresses in the tiles and fasteners).

In addition to the low deflection criterion, the divergent

flap needs to be lightweight and fabricated from high
temperature resistant materials. It is estimated that certain

regions of the divergent flap will experience temperatures
of over 750°C for long exposure times (over 4 hours).

Several design concepts and material systems were initially
considered (i.e., sheet metal, metal matrix composites,

monolithic superalioys and titanium alloys). Alter an

exhaustive study, cast TiAI was chosen as the prime
material for the divergent flap.

During the past several years, the HSR program made
significant advances in casting technologies for TiAI, and

this will be addressed in the next section. However,

findings of several HSR studies proved that a cast TiA1 flap

did not have significant cost and weight savings as

NASAfI'M-- 1999-209071 2



expected.Thesenewstudiesdidshowthatadivergentflap
fabricatedfromwroughtsheetTiAI would have those

savings. Fueled by recent successes of Plansee in

producing wrought sheets of TiAI, it was decided to
concentrate the flap efforts toward sheet TiAI fabrication as

shown in figure 3. Here too, the HSR program has made
considerable contributions to the wrought TiA1 arena in

developing forming and joining techniques.

Cast TiAI is still being pursued for other exhaust nozzle

applications. These same studies showed that the nozzle
sidewall would have significant savings by utilizing a cast

TiAI substructure and wrought TiAI face-sheet hybrid

sidewall structure (figure 3). Many of the pioneering

casting techniques and wrought sheet fabrication methods

are being utilized to produce the sidewall subcomponents
for the HSCT exhaust nozzle.

Cast TiAI Progress
It has been shown that variability in strength, ductility, and
stiffness of TiAI is associated with variations in AI content 2

that can be related, among other factors, to the TiAI
microstructure. There are three basic microstructures that

can be produced in TiAI depending on the AI content and
material processing: equiaxed, duplex and lamellar. TiAI

that is composed of either all equiaxed "f grains or all

lamellar colonies (], plus % phase [DOl9 structure]) has

material properties on opposite ends of the spectrum. The

equiaxed structure provides for higher room temperature
ductility, while the lamellar structure has better fracture

toughness and creep properties. The duplex structure can

be thought of as a compromise between the lamellar and
equiaxed microstructures. Composed of iamellar colonies

" that form interspersed about equiaxed ], grains, the duplex

microstructure leads to higher strength and ductility, but

lower fracture toughness. It also has been shown that
AI content can influence the amount of lamellar colonies

that form about equiaxed y grains 2.

Table 1. Tensile Properties of cast Ti-48-2-2 and XD at 25 °C

Propert]¢ 48-2-2 XD
Yield Strength (MPa) 275-380 400-600
Ultimate Tensile Strength (MPa) 360-500 485-720

Ductility (%) 1-3 0.5-1.5

Modulus of Elasticity (GPa) 160-175 160-175

Fracture Toughness (MPa'4m) 22 17

Initially, there were two types of TiAI being considered for

the cast divergent flap: Ti-48AI-2Nb-2Cr (atomic %) and
Ti-45AI-2Mn-2Nb (atomic %) + 0.8 TiB2 (volume %),

respectively named Ti-48-2-2 and XD. The addition of

TiB2 in the XD inoculates the gamma alloy that results in

refined grain sizes 3 ranging from 100 to 150 btm. In
contrast, the Ti-48-2-2-cast material has grains

approximately 4 times larger than the XD. As seen in

table I, the refined grain size of the XD gives it a higher

strength than the Ti-48-2-2. However, with the increased

strength, XD has a lower ductility and fracture toughness.

In general, both cast Ti-48-2-2 and XD TiAI alloys have a

duplex microstructure, which consists of )' grains, and %+_'
lamellar structure. XD has a finer microstructure and grain

size, which primarily consists of lamcllar grains with TiB2

particles. The Ti-48-2-2 alloy has a somewhat larger grain
structure and the amount of lamellar structure varies

significantly within the casting. In general, the Ti-48-2-2
shows more variation in the grain structure and exhibits

textured material properties in thin components 4. Both alloys
have attractive material characteristics; however, the program

needed to proceed with only one cast TiAI composition.

To down-select to one TiAI alloy, divergent flap segments
were cast from both Ti-48-2-2 and XD alloys (figure 4).

The flap section shown in figure 4 is believed to represent
the largest TiAI casting yet produced. The divergent flap

segments proved to be a challenge in casting TiAI. The flap

section shown in figure 4 incorporates all of the cast

features of the product flap. Casting defects such as hot
tears, porosity, no fill, and shrink were more prevalent in

this component configuration than any ever attempted
before with TiAI.

Figure 4: Proposed divergent flap prototype fabricated
from cast TiAI (Ti-48-2-2).

There were several factors (size, geometry, material

properties, and microstructure) contributing to these
problems. The flap segment, being a rib-stiffened

component with several rib thicknesses varying between
2 mm to 20 mm, has many features that are difficult to cast.

Hot tears and internal porosity occurred at many of the

90 ° intersections of the egg-crate structure. The majority
of these issues were resolved for both TiAI alloys during

NASA/TM-- 1999-209071 3



the HSRprogram.Alter an exhaustivedown-selection
process(basedon castability,repairability,mechanical
properties,machinability,andcost),it wasshownthat
Ti-48-2-2hada slightadvantageoverXD. Theretbre,
Ti-48-2-2waschosenIbrallcastTiAInozzlecomponents.

Aspreviouslystated,theexhaustnozzlesidewall(figure3)
isahybridstructureutilizingbothacastTiAIsubstructure
andwroughtTiAI tacesheets.Thesidewallsubstructureis
comprisedof taperedandcurvedcastTiA! I-beams.The
averagel-beamdimensionsarc70 cm in length,over
10cmindcpth,and2-10mmin thickness.TheI-beams
willbeelectronbeamweldedtogethertoformthesidewall.
Subsequently,theTiAI facesheetis brazedonto thecast
l-beamsubstructurctofinishthefabricationofthesidewall.

Inaneflbrttodemonstrateandoptimizethecastingprocess
prior to a final sidewalldesign,I-beamswerecastin
severalconfigurationsincorporatingdifferent salient
featuresofthesidewall.Oneoftheconfigurationsisshown
in figure5. Themostprevalentdefectduringtheinitial
castingtrialswashottearslocatedattheintersectionofthe
flangeandwebof thel-beam.Afterseveraliterationsthe
gatingwasoptimizedtoeliminatethesehottears.

Figure5: CastTi-48-2-2I-beamandtrackillustrating
salientfeaturesofthenozzlesidewallbeams.

Joiningof castTiAI componentsis nottrivial.Although
mechanicalfasteningof castTiA1hasbeensuccessful,
specialexpensivemachiningoperationsarerequiredand
the requiredreintbrcingfeaturesfor the mechanical
fastenersaddadditionalweightto thecomponent.A less
costlyattachmentmethodis electronbeamwelding.
Electronbeanaweldsof castTi-48-2-2up to 25cmin
lengthand15mmthicknesshavebeensuccessfullymade

asshownin figure6. Thistypeof weldrequiresspecial
handlinganduniqueweldprocedures.To electronbeam
weldcastTiAi, the partsarc heatedin a controlled
atmospheretoaprescribedtemperature5.Thepartsarethen
slowlyremovedfromthefurnaceandwelded.Astheweld
isplaced,thepartsaresimultaneouslyreturnedtoasecond
furnaceatthesameprescribedtemperatureasthefirstand
receiveafinalheattreatment.Followingthisprocesscrack
freeelectronbeamweldshavebeenproducedinTi-48-2-2
onaregularbasiswithoutdifficulty.Whenproperlyheat
treated,the all-weldmetalroomtemperaturetensile
propertiesaregenerallybetterthanthebasemetal's,while
thecreepandfracturetoughnessareequivalent.

Figure6:DefectfreeelectronbeamweldofcastTi-48-2-2.

Conventionallargestructuraltitaniumcastingstypically
exhibitnumerousdefects.Dependingontheirlocationin
thepart,manyof thesedefectsarerepairable.It is more
costeffectivetorepaira largecastingthanto scrapit out.
Typically,thecastingsarerepairedby grindingout the
defectand filling in by GasTungstenArc Welding
(GTAW) deposition.A repair techniquewas also
developedforcastTi-48-2-2usingGTAW5.Theserepairs
aredoneinaninertatmospherewhilethepartis heldata
uniform,elevatedtemperature.Simplecastingsof
Ti-48-2-2havebeensuccessfullyrepairedby GTAW.
Morecomplexgeometrypartslikerib-stiffenedfaceplates
andsectionsfromtheprototypeflap(figure4) alsohave
beenrepaired.Examplesofrelativelycomplexrepairwelds
usingGTAWofa 13-mmthickplateareshownin figure7.

Figure7:GTWArepaironcastTi-48-2-2slab.

NASA/TM--1999-209071 4



Further HSCT applications of cast TiAI

Present applications have been limited to the relatively

large exhaust nozzle components where the weight benefits
of cast TiAI are substantial. Since the conception of the

HSR materials development program, cast TiAI

technologies have matured, and this has prompted HSCT

engine designers to look at other applications for cast TiAI.

Even though maximum use temperatures for long term

exposures are approximately 760°C, designers have
targeted ancillary components in the engine's combustor

region for cast TiAI. The back-structure of the combustor
liner is a prime candidate for cast TiM. The weight

advantage of cast TiAI over conventional superalloys

makes it very attractive for this application in spite of

TiAl's shortcomings.

Other applications are extensions of what is already

demonstrated in present commercial aircraft engines. For

example GE is currently evaluating Ti-48-2-2 compressor
cases (figure. 8). The T700 compressor case has a much

smaller diameter than what will be required for the HSCT,

but still similar casting technologies can be applied. Here

again, the anticipated weight savings justify the

development costs for a larger diameter casing.

!!iii!iii

Cast TI-48Ai-2Cr-2Nb
T700 Compressor Cas_

Figure 8:TT00 Compressor case fabricated from cast

Ti-48-2-2. The HSR program is considering Ti-48-2-2 for a

similar application in the HSCT engine.

GE is also developing a Ti-48-2-2 low-pressure turbine
(LPT) blade for the GE90 engine (figure 9). These blades

are similar in dimension to the LPT blades being designed

lbr the HSCT. Casting techniques for the GE90 blades can

be directly applied to the HSCT blades. Here the weight

savings potential is two-fold. Obviously, the TiAI blades
will lighter than the conventional superalloy blades.

However, the real weight saving will be in the turbine disk.

The lower blade weight decreases the centrifugal force
exerted on the disk, thereby decreasing the associated

stresses and consequently the mass of the superalloy disk.

ii ¸ i ii i _!i ii

GEgO Cast -to'_;ize G_rar,;_a LPI _lade

Figure 9: Cast Ti-48-2-2 Low Pressure Turbine (LPT)

blade prototype for the GE90 engine. Similar size and

geometry of the HSCT LTP blades.

As can bc seen from the previous discussion, significant

progress in the advancement of cast TiAI technologies has
been made via the HSR program. With these

advancements, cast TiAI is being considered in many

critical applications of the HSCT propulsion system. The

opportunities for further applications in commercial aircraft
arc limited by the lack of understanding by the engine

designers of cast TiA1 capabilities and by its high

temperature capabilities. The prior can be resolved by
successes as seen in the HSR program. The latter will

require new compositions of TiM to be developed and
verified. These new compositions must have temperature

capabilities approaching superalloys (over 850°C).

Wrought Sheet TiA1 Progress
Wrought sheet TiAI was down-selected over cast TiAI as the

prime divergent flap material for the HSCT exhaust nozzle.
The divergent flap (figure. 3) is comprised of two superalloy

box beams supporting a series of sheet TiAI subelements

(figure. 10). The fabrication of the sheet TiA1 subelements

required a significant international effort with contributions
from industry, academia, and government. Sheet TiA1

fabrication processes were optimized, forming methods were

developed, and joining techniques were evaluated.

Figure 10: Sheet TiAI subelement of the Divergent Flap

concept for the HSCT with salient features of the lull-scale

flap. [Material: Ti-46.5AI-4(Cr-Nb-Ta)-0.1 B]

NASA/TM--1999-209071 5



PriortoHSRinvolvementwithwroughtTiAI.Planseeof

Austria had developed rolling techniques for TiAI as a
subcontractor with a DoD program in the early 90's ¢'. The

original DoD program focussed on diffusion bonding and

superplastic torming (SPF) methods of fabricating
components from sheet TiA1 ¢'. Therefore, much of

Plansee's eftorts were concentrated on the ingot material

(IM) process of TiAI sheet manufacturing. In the

IM process, an ingot of TiAI is tbrged into a pancake

prematerial. This pancake is then machined into a
rectangular shape, canned, and hot rolled into thin sheets.

The thin TiA! sheets are trimmed and surface ground to the
final thickness. In their IM efforts, Plansee had selected a

composition lor the TiAI ingot that optimized certain
material properties for the SPF process. This composition
was Ti-46.5A1-4(Cr-Nb-Ta)-0.1B and was used for the

HSR program too. The IM process is very costly and has

high material rejection rates. This is due to the tbrging step
of the IM process. However, the properties of the IM sheet

TiAI arc exceptional and have proven to be an excellent
material for SPF.

With the aid of the HSR program, Plansee developed a new

powder metal (PM) processing method for wrought sheet

TiA1. The PM process starts with TiA1 powders that have a
composition the same as the IM material. The powder is

then consolidated into a prematerial rectangle, canned, and

hot rolled, similar to the IM process. Again after rolling,
the sheets are de-canned, trimmed to final shape and

surface ground to final thickness. According to HSR

estimates, there is a significan( cost saving with PM TiA1
sheets because the forging step is eliminated. However, the

PM TiAI sheet has a slight disadvantage over IM TiAI.

Areas of micro-porosity are found in the PM sheets, and

consequently this slightly limits the strength of the material.
For the HSCT application, strength is not a primary design

requirement, and therefore this is not an issue for the HSCT
designers. All of the results described in this section are
based on PM TiA1 sheet material that has been hot rolled in

only one direction.

To fabricate the subelement shown in figure 10, several
different joining techniques were considered and evaluated.

Diftusion bonding was initially the joining method of
choice. Preliminary diffusion bond trials 7 are shown in

figure !1. In figure I la, the first attempt of a diffusion
bond between two PM TiAI sheets exhibits a visible bond

line (arrow in figure l la). After optimizing the bond

temperature the bond line disappears (figure lib).

Subsequent tests showed the bond strength to be greater
than the parent sheet material, indicating the diflusion

bonding was very successful. However, the bond

preparation and required fixturing made it impractical for
the large divergent flap application.

!

Figure I I: Microstructure of diffusion bond trial (a) initial

attempt showing bond line, and (b) optimized diffusion
bond process with no bond line 7.

An alternative joining method for the HSCT flap

application is brazing. Brazing is not as strong as a
diffusion bond but provides an economical option. Brazed

joints using TiCuNi70 brazing film were successfully
demonstrated in the laboratory 7. An example of the brazed

joint is shown in figure 12. As implied by the micro-

hardness indicators (diamond marks in figure 12), the braze

and its two reaction zones are more brittle than the parent

TiAI material. This could be a problem in low cycle fatigue
(LCF) situations; however, for this application, LCF does

not limit the design life. Initial strength tests indicate the

brazed joint to be structurally sound and providing full

coverage within the joint area. These results provide

confidence in using the TiCuNi70 braze, the primary
joining method for the divergent flap.

NASA/TM-- 1999-209071 6



Figure12: TiCuNi70brazeof GammaTiAI sheet
[Ti-46.5AI-4(Cr-Nb-Ta)-0.IB 7.

Mechanical fasteners will be required to attach the TiAI

sheet subelements to the box beams of the divergent tlap

(figure 3). As a part of the effort to evaluate mechanical
joining methods for sheet gamma, a series of room

temperature and 700°C static tensile tests were conducted

on riveted specimens (figure 13 a&b). The specimens were
fabricated by joining two 13 mm X 64 mm X Imm sheets

with a 6 mm"Cherry max" stainless steel rivet. The holes

for the rivets were drilled using water jet machining and

subsequently honed to final dimensions. Initial test results
showed smaller than expected failure loads 7 and failures

initiating within the sheet TiAI at the rivet hole (figure

13a). No rivet failures occurred in any of the specimens. It

was hypothesized that the drilling still produced some
residual stresses. Therefore, a stress relieving heat

treatment was prescribed on subsequent test samples.

Results from subsequent tests with the heat treatment
showed a marked increased in failure loads, and the

majority of the failures occurred with the stainless rivet.

To evaluate wrought gamma TiAI as a viable material

candidate for the exhaust nozzle, a divergent flap

subelement was fabricated using l-mm thick sheets of TiAI
(figure 10). This subelement is the largest structure
fabricated out of sheet TiA1. The subelement was

approximately 85 cm in length and has 10-cm corrugations.
Incorporated into the subelement were features that might

be used in the fabrication of a full-scale divergent flap.

These features included the use of i) shear clips to join
together sections of corrugations, ii) multiple face sheets,

iii) double corrugation sections and iv) brazed joints.

Fabrication processes of double corrugation forming and
face-sheet-to-corrugation brazes were extremely successful.

Shear clip brazes were not as successful. Due to an

incorrect process interpretation from laboratory to

production unit, the braze coverage in the shear clip area
only averaged between 70 to 85 percent. However, it was

shown that the braze coverage was not as important as the
stress concentration caused by the shear clip itself.

Figure 13: Mechanical fastening of sheet Gamma TiAI by
rivet (a) as received, and (b) stress relieved conditions 7.

It was decided to cut the subelement in half (lengthwise)

and test only one corrugation at a time. The subelement

was tested at room temperature in a three-point bend using

a uniform pressure instead of a point load (figure 14). The
subelement had epoxy potted ends to ensure that the

corrugations would not buckle due to the point load

reactions at the roller supports.

Figure 14: Static test of subelement. Load at 3.35 kN.
Predicted failure load of 1.95 kN.

Periodically during the load-up, the subelement was

examined lot any external damage. Only a small crack in

one of the brazed shear clips in the braze material was
observed (note: this location was NOT the failure location).

The beam deflection was noticeable with the naked eye at

3.35 kN (figure 14). Failure occurred shortly after reaching
3.75 kN, which was 90% higher than the predicted failure

load. The subelement initially failed at the center shear clip

edge within the stress concentration area (figure 15).

NASA/TM-- 1999-209071 7



Pretestfiniteelementanalysis(FEA)resultsaccurately
predicted measured corrugation strains/stresses.
Corrugationstresseswerewithin4%of predictedstresses.
Post-testFEAusingthefailureloadof 3.75kNshowsthe
stressat thefailurelocationwas520MPa. Sincethisis
within5%of thesheetgamma'sultimatetensilestrength
(UTS)of 550MPa,it canbestatedthatthefabrication
processof hotformingandbrazingdid notsignificantly
affect the materialsstructuralcapability.The final
conclusionfromthistestis thatsheetgammaTiAIhasa
tremendouspotentiallortheHSCTpropulsionsystem.

Figure15:Failureof subelcmentat 3.75kN, whichis
190%ofpredictedfailureload.Failureinitiatedattheedge
of thecentershearclip towardstheapexof theTiAI
corrugation.

Future applications tor wrought sheet TiAI
With the success of the sheet TiA1 subelement fabrication

and test, sheet TiAI is gaining support as a potential
replacement material for other components in the HSCT.

Some candidate components are hot ducts and chute doors.
Mentioned in the cast TiAI section, sheet TiAI is the

primary material for the sidewall facesheet of the HSCT
exhaust nozzle. As confidence continues to build and more

successes arise, sheet TiA! may be considered as a

lightweight replacement for sheet superalloys in other areas
within the HSCT engine.

Like cast TiAI, wrought sheet TiA1 is hindered by its high
temperature capabilities. Improvements in TiAI

compositions to increase its use temperatures to above
85()"C would enhancc its likelihood to be used as a

superalloy replacement. Likewise, an increase in ductility
and fracture toughness would make it more attractive to

design engineers. Even with the success of braze joining

meth_ls, more work is needed to improve high temperature

durability of these joints. Joining methods such as transient

liquid phase (TLP) bonding for sheet TiA1 would be a great

benefit to the aerospace community. With the HSR hot

forming methods and a TLP bond, advanced concepts like

TiAI honeycomb (figure 16) could be produced for the
HSCT engine.

Figure 16: Example of advanced concept for sheet TiAI
applications in HSCT engine.

Honeycomb structures have saved weight in conventional

aircraft and could save weight in the HSCT. If successfully
developed, TiAI honeycomb panels could be used in hot

ducts and doors within the HSCT engine. TiAI honeycomb

panels could also replace the sheet TiAI being used in the
divergent flap and sidewall of the HSCT nozzle.

Presently, NASA's reusable launch vehicle (RLV) program

is bookkeeping TiAI honeycomb as the primary thermal
protection system (TPS) for the leeward side of the
VentureStar TM (figure 17). The pioneering HSR fabrication

and joining techniques have been transferred to the RLV

program, representing a synergistic use of technology
between space and aeronautics applications.

Figure 17: TiAI Honeycomb panels are being considered in

the Reusable Launch Vehicle (RLV) program.

NASA/TM--1999-209071 8
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Summary

Many of the presented advancements in casting, fabrication

and joining technologies tor TiAI are attributed to the HSR

program. Much more work is required to achieve

acceptance of this material system within the design

community. However, the potential weight savings of TiAI

over conventional superalloys have enticed design

cnginecrs to consider this matcrial for high temperature

applications where high stiffness is required. Each

successful accomplishment in programs such as RLV and

HSR creates an optimistic future for TiAI in aerospace

applications. To truly capitalize on the potential for this

class of material, more research is required. Areas for

improvement include low cost material production, robust

,joining methods, and increased materials propcrty

database.
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